Electroweak Model and Constraints on New Physics (Jens Erler and Paul Langacker, 11/09) - Review of precision electroweak data (with correlations) - WNC, Z-Pole (LEPEWWG averages/correlations), LEP 2, M_W, m_t - Selected (correlated) flavor physics (g_μ-2, b→sγ, hadronic τ decay) - Complete SM radiative corrections - MS-bar scheme (GAPP) (on-shell awkward for mixed QCD-EW, large m_t, new physics) - Consistent and optimal theory expressions (with correlations) - SM fit - consistency; $\sin^2 \theta_W$, m_H , α_s , m_t , $\Delta \alpha_{had}$ - Beyond the SM fits - oblique $(\rho; S, T, U)$, model independent ## New for 2010 - Reorganized (section on W and Z physics) - New data (Tevatron M_W , m_t ; $\Delta \alpha_{had}$ constraints) - Improved theory on hadronic T decays - Lower α_s (better agreement with other determinations) - Improved many body calculations for atomic parity (Cs) - Previous 2.3σ discrepancy resolved - Theory corrections for NuTeV - Initial 3.0σ discrepancy (major effect on BSM fits) - A number of corrections/new effects have been identified (may shift central values, increase uncertainties) - Preliminary, pending NuTeV reanalysis (need by 9/11 for next PDG) ## v-DIS - NuTev: initially 3.0 σ deviation - $\int dx \times [s \overline{s}] = 0.0020 (14) \text{ NuTeV} \implies \delta s^2_W = -0.0014 (10)$ - theory: zero crossing too early? $\implies \delta s^2_W = -0.0007$ (7) - $K_{e3} = 4.82 (6)\% \rightarrow 5.07 (4)\% (4\sigma) \Longrightarrow \delta s^2_W = 0.0016$ - $m_d m_u (CSV) \implies \delta s^2_W = -0.0015 (3)$ - QED splitting effects (CSV) $\Rightarrow \delta s^2_W = -0.0011 (11)$ - isovector EMC effect (affecting all and not just excess neutrons) cloet, Bentz, Thomas $\Rightarrow \delta s^2_W = -0.0019$ (6) \Leftarrow - QED radiative corrections Diener, Dittmaier, Hollik ~ $O(1\sigma)$ # Input Data | Quantity | Value | Standard Model | Pull | Dev. | |---|--|-------------------------------------|------|------| | m_t [GeV] | 173.1 ± 1.3 | 173.2 ± 1.3 | -0.1 | -0.5 | | M_W [GeV] | 80.420 ± 0.031 | 80.384 ± 0.014 | 1.2 | 1.5 | | | 80.376 ± 0.033 | | -0.2 | 0.1 | | g_L^2 | 0.3027 ± 0.0018 | 0.30399 ± 0.00017 | -0.7 | -0.6 | | $\begin{array}{c}g_L^2\\g_R^2\end{array}$ | 0.0308 ± 0.0011 | 0.03001 ± 0.00002 | 0.7 | 0.7 | | $g_V^{ u e}$ | -0.040 ± 0.015 | -0.0398 ± 0.0003 | 0.0 | 0.0 | | $g_A^{ u e}$ | -0.507 ± 0.014 | -0.5064 ± 0.0001 | 0.0 | 0.0 | | $Q_W(e)$ | -0.0403 ± 0.0053 | -0.0473 ± 0.0005 | 1.3 | 1.2 | | $Q_W(Cs)$ | -73.20 ± 0.35 | -73.15 ± 0.02 | -0.1 | -0.1 | | $Q_W(\mathrm{Tl})$ | -116.4 ± 3.6 | -116.76 ± 0.04 | 0.1 | 0.1 | | $ au_{ au}$ [fs] | 291.09 ± 0.48 | 290.02 ± 2.09 | 0.5 | 0.5 | | $\frac{\Gamma(b{\to}s\gamma)}{\Gamma(b{\to}Xe\nu)}$ | $\left(3.38^{+0.51}_{-0.44}\right) \times 10^{-3}$ | $(3.11 \pm 0.07) \times 10^{-3}$ | 0.6 | 0.6 | | $\frac{1}{2}(g_{\mu}-2-\frac{\alpha}{\pi})$ | $(4511.07 \pm 0.77) \times 10^{-9}$ | $(4509.13 \pm 0.08) \times 10^{-9}$ | 2.5 | 2.5 | | Quantity | Value | Standard Model | Pull | Dev. | |--------------------------------------|-----------------------|-----------------------|------|------| | M_Z [GeV] | 91.1876 ± 0.0021 | 91.1874 ± 0.0021 | 0.1 | 0.0 | | Γ_Z [GeV] | 2.4952 ± 0.0023 | 2.4954 ± 0.0009 | -0.1 | 0.1 | | $\Gamma(\text{had}) \text{ [GeV]}$ | 1.7444 ± 0.0020 | 1.7418 ± 0.0009 | | | | $\Gamma(\text{inv}) \text{ [MeV]}$ | 499.0 ± 1.5 | 501.69 ± 0.07 | | | | $\Gamma(\ell^+\ell^-)$ [MeV] | 83.984 ± 0.086 | 84.005 ± 0.015 | | | | $\sigma_{\mathrm{had}}[\mathrm{nb}]$ | 41.541 ± 0.037 | 41.484 ± 0.008 | 1.5 | 1.5 | | R_e | 20.804 ± 0.050 | 20.735 ± 0.010 | 1.4 | 1.4 | | R_{μ} | 20.785 ± 0.033 | 20.735 ± 0.010 | 1.5 | 1.6 | | R_{τ} | 20.764 ± 0.045 | 20.780 ± 0.010 | -0.4 | -0.3 | | R_b | 0.21629 ± 0.00066 | 0.21578 ± 0.00005 | 0.8 | 0.8 | | R_c | 0.1721 ± 0.0030 | 0.17224 ± 0.00003 | 0.0 | 0.0 | | $A_{FB}^{(0,e)}$ | 0.0145 ± 0.0025 | 0.01633 ± 0.00021 | -0.7 | -0.7 | | $A_{FB}^{(0,\mu)}$ | 0.0169 ± 0.0013 | | 0.4 | 0.6 | | $A_{FB}^{(0, au)}$ | 0.0188 ± 0.0017 | | 1.5 | 1.6 | | $A_{FB}^{(0,b)}$ | 0.0992 ± 0.0016 | 0.1034 ± 0.0007 | -2.7 | -2.3 | | $A_{FB}^{(0,c)}$ | 0.0707 ± 0.0035 | 0.0739 ± 0.0005 | -0.9 | -0.8 | | $A_{FB}^{(0,s)}$ | 0.0976 ± 0.0114 | 0.1035 ± 0.0007 | -0.6 | -0.4 | | $\bar{s}_{\ell}^{2}(A_{FB}^{(0,q)})$ | 0.2324 ± 0.0012 | 0.23146 ± 0.00012 | 0.8 | 0.7 | | v I B | 0.2316 ± 0.0018 | | 0.1 | 0.0 | | A_e | 0.15138 ± 0.00216 | 0.1475 ± 0.0010 | 1.8 | 2.2 | | | 0.1544 ± 0.0060 | | 1.1 | 1.3 | | | 0.1498 ± 0.0049 | | 0.5 | 0.6 | | $A_{\mu} \ A_{ au}$ | 0.142 ± 0.015 | | -0.4 | -0.3 | | A_{τ} | 0.136 ± 0.015 | | -0.8 | -0.7 | | | 0.1439 ± 0.0043 | | -0.8 | -0.7 | | A_b | 0.923 ± 0.020 | 0.9348 ± 0.0001 | -0.6 | -0.6 | | A_c | 0.670 ± 0.027 | 0.6680 ± 0.0004 | 0.1 | 0.1 | | A_s | 0.895 ± 0.091 | 0.9357 ± 0.0001 | -0.4 | -0.4 | ### SM fit results | M_Z | 91.1874 ± 0.0021 | 1.00 | -0.01 | 0.00 | 0.00 | -0.01 | 0.00 | 0.12 | |--|---------------------------|-------|-------|-------|------|-------|-------|-------| | $\widehat{m}_t(\widehat{m}_t)$ | 163.5 ± 1.3 | -0.01 | 1.00 | 0.00 | 0.00 | -0.10 | 0.00 | 0.39 | | $\widehat{m}_b(\widehat{m}_b)$ | 4.198 ± 0.023 | 0.00 | 0.00 | 1.00 | 0.25 | -0.04 | 0.01 | 0.04 | | $\widehat{m}_c(\widehat{m}_c)$ | $1.266^{+0.031}_{-0.036}$ | 0.00 | 0.00 | 0.25 | 1.00 | 0.08 | 0.02 | 0.12 | | $\alpha_s(M_Z)$ | 0.1183 ± 0.0015 | -0.01 | -0.10 | -0.04 | 0.08 | 1.00 | 0.00 | -0.04 | | $\Delta \alpha_{\rm had}^{(3)}(1.8 \text{ GeV})$ | 0.00574 ± 0.00010 | 0.00 | -0.01 | 0.01 | 0.02 | 0.00 | 1.00 | -0.18 | | M_H | 90^{+27}_{-22} | 0.12 | 0.39 | 0.04 | 0.12 | -0.04 | -0.18 | 1.00 | - SM is consistent with data ($\chi^2/dof=43.0/44$) - m_t (pole)= 173.2 ± 1.3 (176.0+8.5-7.0 from indirect alone) - Including LEP2+ Tevatron M_H limits: M_H≤(145, 149, 194) GeV at (90, 95, 99) % - Consistent with LEPEWWG and GFitter (but larger data set; important for BSM) 0.01 0.1 0.001 0.232 0.23 0.228 0.0001 LEP 100 10 $\mu \ [GeV]$ Tevatron 1000 10000 185 # Beyond the Standard Model - Oblique (defined to vanish in SM) - $\rho=1.0008+0.0017-0.0007$ (for S,U=0) - S,T, U - M_H range expanded - Little effect on other SM parameters - Discussion of models (arbitrary family-universal gauge theory for WNC with V-A for ν) | 1.25 | |---| | Γ_{Z} , σ_{had} , R_{l} , R_{g} | | 1.00 asymmetries | | 0.75 M _W | | v scattering | | 0.50 e scattering | | 0.25 APV | | + [! / / / /] | | 0.00 | | | | -0.25 all: M _H = 117 GeV | | -0.50 E " | | all: M _H = 340 GeV | | -0.75 / / all: M _H = 1000 GeV | | -1.00 | | -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 | | S | | Z' | electroweak | CDF | DØ | LEP 2 | M_H | |-----------------------|-------------|-------|-----|-------|----------------------| | $\overline{Z_{\chi}}$ | 1,141 | 892 | 800 | 673 | 171^{+493}_{-89} | | Z_{ψ} | 147 | 878 | 763 | 481 | $97^{+\ 31}_{-\ 25}$ | | Z_{η} | 427 | 982 | 810 | 434 | 423_{-350}^{+577} | | Z_{LR} | 998 | 630 | | 804 | 110^{+174}_{-35} | | Z_S | 1,257 | 821 | 719 | _ | 149^{+353}_{-68} | | Z_{SM} | 1,403 | 1,030 | 950 | 1,787 | 331_{-246}^{+669} | | $Z_{ m string}$ | 1,362 | | | | 134^{+299}_{-58} | | Qu | antity | V | alue | SM | | Correlatio | on | |---------------|-------------------|---------|--------------------|------------|-------|------------|-------| | ϵ | $i_L(u)$ | 0.338 | ± 0.016 | 0.3461(1) | | | | | ϵ | $\epsilon_L(d)$ | -0.434 | ± 0.012 | -0.4292(1) | | non- | | | ϵ | $I_R(u)$ | -0.174 | $+0.013 \\ -0.004$ | -0.1549(1) | | Gaussian | | | ϵ | $I_R(d)$ | -0.023 | $+0.071 \\ -0.047$ | 0.0775 | | | | | | g_L^2 | 0.3025 | 5 ± 0.0014 | 0.3040(2) | -0.18 | -0.21 | -0.02 | | | g_R^2 | 0.0309 | 9 ± 0.0010 | 0.0300 | | -0.03 | -0.07 | | | θ_L | 2.48 | ±0.036 | 2.4630(1) | | | 0.24 | | | θ_R | 4.58 | $^{+0.41}_{-0.28}$ | 5.1765 | | | | | | $g_V^{ u e}$ | -0.040 | ± 0.015 | -0.0398(3) | | | -0.05 | | | $g_A^{ u e}$ | -0.507 | ± 0.014 | -0.5064(1) | | | | | C_{1i} | $_{\iota}+C_{1d}$ | 0.1537 | 7 ± 0.0011 | 0.1528(1) | 0.64 | -0.18 | -0.01 | | $C_{1\imath}$ | $_{\iota}-C_{1d}$ | -0.516 | ±0.014 | -0.5300(3) | | -0.27 | -0.02 | | C_{2i} | $_{\iota}+C_{2d}$ | -0.21 | ± 0.57 | -0.0089 | | | -0.30 | | C_{2i} | $_{\iota}-C_{2d}$ | -0.077 | ± 0.044 | -0.0625(5) | | | | | $Q_W(e)$ | $=-2C_{2e}$ | -0.0403 | 3 ± 0.0053 | -0.0473(5) | | | | $$\begin{split} -\mathcal{L}^{\nu h} &= \frac{G_F}{\sqrt{2}} \, \overline{\nu} \, \gamma^{\mu} \left(1 - \gamma^5 \right) \nu \sum_i \left[\epsilon_L \left(i \right) \overline{q}_i \, \gamma_{\mu} \left(1 - \gamma^5 \right) q_i + \epsilon_R \left(i \right) \overline{q}_i \, \gamma_{\mu} \left(1 + \gamma^5 \right) q_i \right] \\ -\mathcal{L}^{\nu e} &= \frac{G_F}{\sqrt{2}} \, \overline{\nu}_{\mu} \gamma^{\mu} \left(1 - \gamma^5 \right) \nu_{\mu} \, \overline{e} \, \gamma_{\mu} \left(g_V^{\nu e} - g_A^{\nu e} \gamma^5 \right) e, \\ -\mathcal{L}^{eh} &= -\frac{G_F}{\sqrt{2}} \, \sum_i \left[C_{1i} \, \overline{e} \, \gamma_{\mu} \gamma^5 e \, \overline{q}_i \, \gamma^{\mu} q_i + C_{2i} \, \overline{e} \, \gamma_{\mu} e \, \overline{q}_i \, \gamma^{\mu} \gamma^5 q_i \right], \end{split}$$ #### **Future** - Incorporate all new data, radiative corrections, theory - Relevant new LHC, flavor physics, BSM - NuTeV reanalysis (if available by 9/11) - LEP 2 results (especially for BSM) - Integrated Z' analysis (precision, LEP2, Tevatron, LHC) - Better integration with other reviews (e.g., QCD, quark masses, Z')